Motif-Based Protein Sequence Classification Using Neural Networks
نویسندگان
چکیده
منابع مشابه
Motif-Based Protein Sequence Classification Using Neural Networks
We present a system for multi-class protein classification based on neural networks. The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the neural network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching sco...
متن کاملProtein Sequence Classification Using Probabilistic Motifs and Neural Networks
The basic issue concerning the construction of neural network systems for protein classification is the sequence encoding scheme that must be used in order to feed the network. To deal with this problem we propose a method that maps a protein sequence into a numerical feature space using the matching local scores of the sequence to groups of conserved patterns (called motifs). We consider two a...
متن کاملProtein Classification Using Neural Networks
We have recently described a method based on Artificial Neural Networks to cluster protein sequences into families. The network was trained with Kohonen's unsupervised-learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of the proteins. We show here the application of that method to classify 1758 protein sequences, using as inputs a limited number of prin...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Sequence Motif Identification and Protein Family Classification Using Probabilistic Trees
Efficient family classification of newly discovered protein sequences is a central problem in bioinformatics. We present a new algorithm, using Probabilistic Suffix Trees, which identifies equivalences between the amino acids in different positions of a motif for each family. We also show that better classification can be achieved identifying representative fingerprints in the amino acid chains.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Biology
سال: 2005
ISSN: 1066-5277,1557-8666
DOI: 10.1089/cmb.2005.12.64